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Zonal harmonic series expansions of Legendre functions and 
associated Legendre functions 

D Llanwyn Jones and C P Burke 
Physics Department, King’s College, Strand, London WC2R 2LS, U K  

Received 24 November 1989 

Abstract. The  Legendre functions P:(* cos 6) of complex degree U and integral order m 
may be expanded in terms of Legendre functions of integral degree and order, the latter 
being the zonal harmonic functions P::‘(cos 6). Two methods for improving the convergence 
of a standard series expansion are discussed for the cases m = O  and  1. The first method 
involves repeated application of the relations between contiguous Legendre functions and  
the second employs integral relations between Legendre functions of different order. The 
formulae derived are suitable for computation and  easily programmed. 

1. Introduction 

The Legendre functions P , , ( x )  = P ” , x ) ,  associated Legendre functions P T ( x )  with 
m = 1 , 2 , 3 , .  . . and x = *cos 6 are involved in the solution of problems concerned with 
wave propagation or  scattering when formulated in a spherical polar coordinate system 
(I; 6, 9). These functions are singular on x =  -1 and regular on x = +l .  For the 
numerical solution of such problems a computer algorithm enabling the calculation 
of these functions is required. The concern of this paper is to develop formulae which 
enable computations to be made rapidly using microcomputers, most of which have 
a lower precision than a mainframe computer. 

If 1 V I  is large and 19 is not too near 0 or T, the Legendre functions can be computed 
efficiently using a well known asymptotic expansion (e.g. Erdtlyi et a1 1953, p 162). 
It should be noted that the asymptotic expansion requires the computation of gamma 
functions with complex arguments. Our concern here is with values of Iv1 and 6 for 
which this expansion in inappropriate. 

In the context of terrestrial electromagnetic wave propagation, Jones and Kemp 
(1970) used elementary zonal harmonic expansion formulae to compute the electric 
and magnetic vectors of the wavefield. Jones (1970) made calculations of electromag- 
netic wavefields in which the accuracy of these zonal harmonic expansion formulae 
for the Legendre functions (with m = 0, 1 and 0.1 < / V I  < 15) was compared to that of 
the asymptotic expansion referred to above and formulae derived from this asymptotic 
expansion. 

In relation to molecular elastic scattering calculations Connor and  Mackay (1978) 
present data listing values of P:(cos 6) computed on a mainframe for v = 0 . 1 + 0 . 1 ~  
and  Y = 3 + 3 ~ ,  using a zonal harmonic series expansion of improved convergence. The 
expansion used was a corrected form of a formula originally derived with considerable 
ingenuity by Nickolaenko and Rabinowitz (1974). In Connor and  Mackay (1979), 
useful graphical comparisons are made of this zonal harmonic series representation 
of P:((x) and a variety of asymptotic formulae. 
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Recently, Jones and Joyce (1989) have a given a set of formulae derived from the 
hypergeometric series representation of the Legendre functions. These enable 
Pr( -cos 6) to be computed efficiently on a microcomputer for m = 0 and 1,0 < 6 s rr 
and arbitrary values of v. Values of Pr(-cos 6) are tabulated for two complex values 
of v for several values of 6. 

Here we present an alternative set of exact series representations of the Legendre 
functions suitable for the computation of P r ( x )  with m = 0 or 1, real values of x with 
-1 < x s +1 and arbitrary complex values of v. These formulae all involve series 
expansions in terms of the zonal harmonic functions P r ( x ) ,  in  which n and m are 
integers. While our primary interest is the computation of extremely low frequency 
electromagnetic waves propagating over the surface of the earth, for which the real 
part of v is somewhat greater than the imaginary part, the formulae developed are of 
general validity. The values m = 0, 1 are of particular interest in this application because 
these determine the electric and magnetic components of the radiated field respectively 
(Jones and Joyce 1989). 

The series expansion formulae are derived using well known relations presented, 
for example, by ErdClyi et a1 (1953). We make use of two techniques, the first being 
the repeated application of the relations between contiguous functions and the second 
being the application of integral equations. 

2. Convergence of zonal harmonic expansion formulae 

Initially we consider the behaviour of the zonal harmonic functions for large values 
of n. 

Sommerfeld (1967, section 24.17) showed that for n + CO, with n >> m and 0 < 6 < rr, 
the zonal harmonics Pr (cos  6) have the following asymptotic representation. 

I -  

Hence, for large n, if Pr (cos  6) is viewed as a function of n, m and 6 being fixed, 
this function is oscillatory with period A n  = 2 ~ / 6  and an amplitude of order n m - ’ ’ ? .  
As n increases this amplitude decreases if m S 0 and increases if m > 0. In practice 
(1) gives graphical accuracy for n 3 10 as long as 6 is not too near 0 or n. (1) is also 
valid for complex values of n, i.e. n + v, and is, in fact, the first term of the asymptotic 
expansion referred to in section 1 when the gamma functions in the expansion are 
replaced by their asymptotic expressions. 

The formulae developed in this paper include the summation, 

c f ( n ,  v)p;(cos 6). 
n 

For large n and n >> IvI, the terms decrease as n-‘ where the exponent c determines 
the rate of convergence of the summation. The value of c depends on m (as discussed 
in the paragraph above) and on the form of the function f ( n ,  v). We shall show that 
it is possible to obtain expansion formulae with arbitrarily large values of c (so that 
the convergence rate is rapid) but at the expense of having an involved formula (so 
that each term takes a relatively long time to compute). In considering an optimum 
formula for computation it is necessary to weigh the rate of convergence against the 
complication of the formula. 
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The zonal harmonic expansion formulae developed here require the computation 
of P;(cos 8 )  for m =0 ,  1 and arbitrary n. These functions may readily be computed 
by the (numerically stable) recursion relation 

( n - m ) P :y ( x ) = ( 2 n - 1 ) .UP :y- , ( x ) - ( n + m - 1 ) P:y- :( x ) 

used for increasing values of n, starting with the known elementary functions P ; ( x )  
and P : ( x ) .  

The starting point of our  development is the fundamental zonal harmonic expansion 
(ErdClyi er a /  1953, p 167), 

sin vx ' ( 2 n  + I)P::'(cos 6) 
P:"(-cos 6) = ( - l )  c x ,j - ,) n ( n + 1 ) - v( v + 1 ) ' 

Formula ( 2 )  is obtained from the published formula by the replacement 6 + T - 6 and 
by using the result P F (  - x )  = (-l)" 'T"P;(x).  The formula is valid for O <  6 < 2n- and 
for m G 1. In the reference cited the latter condition is stated as m G 0 but numerical 
tests show that ( 2 )  does converge to the correct result with m = 1. By converting the 
summation over discrete values of n to an integral over continuous n,  it can be shown 
that (2)  (with m = 1 )  is related to the Fresnel integrals (which tend to a finite limit for 
n + E )  thus demonstrating the convergence of the formula. 

In considering the propagation of electromagnetic waves around the Earth it is 
conventional to locate the radiation source (i.e. the singularity) on 6=0.  In ( 2 )  we 
thus choose to  represent P:"(-cos 6) (rather than P:"(+cos 6)) because this function 
is singular on the ray 6 = 0. 

From the discussion above, for values of n >> lvl the terms within the summation 
( 2 )  are of order n"'-I ' / n  = n"'-' ' . Formula ( 2 )  is thus poorly convergent for m = 0 , l .  
For the values of lv( appropriate for our electromagnetic wave computations (Jones 
and Joyce 1989) a few hundred terms are needed to compute P : ' ( x )  to graphical 
accuracy and  thousands of terms to compute P !  (x) .  

Formula ( 2 ) ,  though poorly convergent, is a much simpler formula (and hence 
easier to programme) than the formulas involving hypergeometric functions as used 
by Jones and  Joyce (1989). Also, in relation to the scattering of waves by a sphere, 
Schumann (1952) pointed out that ( 2 )  has the physical significance of being an  
expansion of the wavefield in terms of its normal modes, the condition n ( n + l ) =  
v(v + 1) giving the (complex) mode frequencies in the electromagnetic wave problem. 
For these reasons we have sought to develop alternative and more convergent expansion 
formulae involving the zonal harmonics. 

3. Formulae derived by application of the contiguous relations 

The relations between contiguous Legendre functions which were used are as follows 
(Erdelyi er a1 1953, p 161). 

( 2 v +  l)SPI,(-C) = v ( v +  l)[PV+,(-C) - P:,LI(-c)] (3) 

and 

in which S = sin 6, C = cos 6 and m = 0 or 1 as indicated. 
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Using (2) with m = 0, and  making the substitutions v +  v +  1 and  v +  v - 1, the 
right-hand side of (3) can be evaluated giving, 

(5) 
x 2 v ( v + 1 )  Ir (2n  + l)PO,(C) 

PL(-C) = 
sin UT 

The terms in the summation in (5), with n >> lvl, are of order n-' with c =$.  The 
expansion ( 5 )  is thus much more convergent than the initial expansion (2)  (for which, 
with m = 1, c = 4). 

If ( 5 )  is now used to obtain expansions for P:,+,(-C) and  P;- , ( -C) ,  a new series 
formula for P",-C) can be obtained using (4). The result is, 

sin 6 n?(, [ n ( n + 1 ) - v ( v - 1 )I[ n ( n + 1 ) - ( v + 1 )( v t 2)1' 

x 4 "  
sin UT sin- 19 n = U  

P':(-C) =- 1 N,(2n + l)PO,(C)/D, 

where 

N ,  = n ( n  + 1 ) + (  U -  l ) ( v + 2 )  

and  

D, = [ n( n + 1)  - ( Y - 2)(  v - 1)][ n( n + 1) - V (  v + 1)][ H( TI + 1) - (  v + 2)( v + 3)] 

Equation (6) is an  expansion formula for P:(-C)  in which, for n >> IvI, the terms are 
of order n-' with convergence exponent c = :. In contrast, for the initial formula ( 2 )  
(with m = 0), c = 1 .  

Proceeding as before, we now use (6) with (3) to obtain a further expansion for 
Pb( -C ) ,  the result being 

in which 

N2 = 2 n ( n + 1 ) + ( v - 2) ( v + 3 ) 

and 

D, = [ n ( n  + 1)  - ( v -3 ) (  ~ - 2 ) ] [ n ( n  + 1)  - (  V -  l ) ~ ]  

x [ n ( n + 1 ) - ( v + 1 ) ( v + 2)] [ n ( n + 1 ) - ( v + 3) ( v + 4)]. 

The terms of (7) converge as n-' with c =? (if n > > \ V I ) .  
As a final illustration of this process, using ( 7 )  and (4) the result obtained is 

57 64 
P:(-C)=-- N,(2n+l)PO,(C)/D, 

sin UT sin4 6 ,,=() 

with 

N3 = n ' ( n  + 1) '+2n(n  + 1 ) ( 2 ~ ' + 2 ~ - 7 ) + ( ~ - 3 ) (  V -  1 ) ( ~ + 2 ) ( ~ + 4 )  

and  

D, = [ n ( FI + 1 ) - ( v - 4)  ( v - 3 ) ] [ n ( n +  1 ) - ( - 2) ( v - 1 )]  [ n ( n 1 ) - v ( v -k 1 ) ] 

x [ n( n + 1) - ( v + 2 ) (  ~ + 3 ) 3 [ n ( n  + 1) - ( v + 4 ) ( v +  511 

and  a convergence exponent c = 9. 
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It should be noted that the formulae derived above only require the computation 
of Py(cos 6) and that each time (3 )  is used c increases by two but when (4) is used 
c remains the same. While it would be possible to continue this analysis indefinitely, 
the derived expansion formulae are becoming so involved, that it is likely that the time 
saved in computation by the large convergence exponent c is more than offset by the 
time needed to compute each term of the summation. 

All of the expansion formulae listed above have been validated numerically using 
a microcomputer. It appears that the formulae having c =; are optimum in terms of 
computational speed for the range of values of v experienced in our electromagnetic 
field computations ( I v l s  15). I f  the imaginary part of v is small compared to the real 
part, the main contribution to the summation occurs in the vicinity of n = R e  v so 
rather more than Re v terms have to be computed whatever the convergence of the 
formula. Also, for small values of 9, numerical rounding errors lead to a loss of 
precision which is increasingly severe as c increases. 

Formula (8) is less involved than that of Nickolaenko and  Rabinowitz (1974) which 
has the same convergence exponent. However, the latter formula includes a partial 
extraction of the singularity on 6 = 0 and is advantageous for computational purposes 
for small values of 6. We develop a set of formulae in which the source singularity is 
extracted below. 

4. Formulae obtained from the expansion of P;'(-cos 6) 

For negative integer values of m the convergence of the series expansion (2) increases 
as ImI increases in accordance with the discussion in section 2. It should be noted that 
convergent series expansions for positive integer m can be obtained easily from the 
negative-m formulae by applying the result (ErdClyi er al 1953, p 144): 

P ; " ' ( ~ ) = ( - i ) " ~ ( v + l  - m ) P ; ( x ) / T ( v + i + m )  (9)  
which is valid for m = 1 , 2 , 3 . .  . and both integer and complex v. In  (9)  symbol r 
indicates the gamma function. 

Using (9) with m = 1 and  the result r ( v + 2 )  = v( v +  l)r( v )  (also valid for v-+ n )  
we get 

P I ' ( C )  = - P ! , ( C ) / [ v ( v +  l ) ]  and P , ' ( C ) = - P ~ ( C ) / [ n ( n + l ) ] .  (10) 

So from (2) (with m = - l ) ,  using (10) we obtain an  alternative zonal harmonic 
expansion formula for PL(-C).  The term n = 0 is evaluated using the result P ; ' ( - C )  = 

cot(46).  The resulting expansion is then 

The terms in the summation ( 1  l ) ,  with n >> I V I ,  are now of order n-' with c = 1.  Equation 
(11) is thus significantly more convergent than the expansion (2) ,  used with m = 1, for 
which c = $. The improvement is a result of the extraction of the singularity (the 'source' 
singularity) on the ray 6 = 0. This singularity is embodied in the term cot(;$?) which 
tends to 2/  6 as 6 + 0. Because Pf,( -cos 6) + -2 sin wr/ (x6) as 6 + 0 it can be seen 
that the term c o t ( f 6 )  correctly expresses this singularity. 

Starting with (111, the technique described in section 3 can be used to generate a 
second set of more convergent formulae for P Y ( - C )  with m = 0, 1. For example, the 
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first expansion generated is given by (5)  with the replacement of P t ( - C )  by Py,(-C), 
P",C) by P h ( C )  and omission of the factor v ( v +  1). Further formulae will not be 
presented here but it is clear that the convergence exponents ( c )  of the set generated 
from (11) are :,;,?,. . . . 

As an  alternative to the technique of section 3, it is possible to generate more 
compact expansions by integration. This is considered in the following section. 

5. Formulae obtained by integration 

We start with (1  1) and transform this to a series expansion for Py,( -C) by integration. 
Because P t ( - C )  = - (d /d6 )Py , ( -C)  and  P l ( C )  = (d /d6 )P : (C) ,  it follows that 

PO,(-C)=- P ! , ( - C ) d 6 + K ,  and 

in which K,, and K ,  are the integration constants. 

P:( C )  = P;(  C )  d 6  + K ,  I I 
Integrating (11) a new series expansion of P ; ( - C )  is obtained as follows: 

(12) 

In (12) the constant k,. subsumes all the constant terms involving K , ,  and the set K,,. 
These d o  not need to be considered explicitly. 

To evaluate k ,  we put I9 = 7r (i.e. C = -1) in (12), noting that Py,(l) = 1 and  
P:(-l) = (-1)". Therefore 

1 i - l ) " (2n  + 1) 

, j z ,  n(n + l ) [ n ( n  + 1) - v ( v +  I ) ] '  
ir 

k ,  =- + v ( v + 1 )  c 
sin vir 

(13) 

The summation in (13) is computed by considering (2 )  with m = 0 and  6 = ir. With 
some trivial manipulation, it is then easily seen that 

( - 1 ) ' > ( 2 n + l )  --____ l ; .  
7r - 

sin v7r v ( v + I )  ,,-, n ( n + I ) - v ( v + l ) '  

Substituting this value of ir/sin vir into (13) we find, 

( - 1 ) " ( 2 n + l )  c v ( v + l )  , , - I  n ( n + l )  
1 k,  =-- 

in which the summation is evaluated as -1 by writing out the terms of the series. 
Hence k,  = 1 + 1/[ v( v +  l ) ]  and  (12) becomes 

1 
1n[sir1'(;8)]+ 1 +- 

v ( v + l )  
P:( -cos 8) = - 

sin vrr 
7r 

For n>>lvl, the terms in the summation in (14) are of order n-' with c= ; .  It is 
noted that (14) has the same convergence exponent c as (6) but that the terms of (14) 
are less complicated than those in (6)  (and  hence can be computed more rapidly). 
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As in the discussion following (1  I ) ,  the simpler form of the terms in the summation 
in (14) is a result of the fact that the singularity on the ray 19 = 0 has been removed 
from the expansion. The singularity here is in the term involving In[sin’(~6)]. As 6 + 0, 
it is well known that P:(-cos 6)- (sin W / H )  ln[sin2(i6)] which is exactly the first 
term on the right-hand side of (14). 

We now use the result (14) to obtain a new formula for P t ( - C )  by a further stage 
of integration. The basis of this next step is the result (ErdClyi et a1 1953, p 149): 

P ; ’ ( x )  = -( 1 - x’)-’ ’ 1‘ P ( i ( x ’ )  dx‘ ( 3 5 )  
1 

with x = -C = -cos 6, ( 1  - x’) = sin’ 6 and d x  = sin 6 d 6 .  In this case there is no 
constant of integration to be evaluated. 

The integral of the left-hand side of (14) is sin 6 P t (  - C ) / [  v( v +  l ) ]  and  the integral 
of P:(C)  on the right-hand side of (14) is -sin 6 P ! , ( C ) / [ n ( n + l ) ] ,  where (10) has 
been used to transform the negative-order function in (15) to positive order. After 
some simplification of the trigonometric terms the final result obtained is 

In  (16) it is noted that the first term in parentheses tends to 0 as 6 + 0, so that the 
singularity is the same as in (11). For n >>/vi, the terms of the summation in (16) are 
of order n - ‘ ,  with c = I .  Equation (16) is more convergent than the ‘I formula’ (5) 
(and of a similar complexity) and it is much simpler than the ‘ y  formula’ (7). Also 
the fact that the singularity on 6 = 0  is explicit in ( l l ) ,  (14) and (16) makes these 
formulae physically more satisfying than the formulae of section 3 .  

Because the first term in parentheses in (16) does not have a closed-form integral 
we cannot make further progress with this technique without introducing a second-series 
summation. 

6. Numerical validation of the derived formulae 

All of the formulae derived in this paper have been checked by making numerical 
computations on a ‘RM Nimbus’ microcomputer using a FORTRAN compiler. A set of 
data for comparison were calculated using the formulae involving the hypergeometric 
function ‘ F ,  as presented by Jones and Joyce (1989). The values of lvl used in this 
validation were those appropriate to our  electromagnetic wave propagation studies 
where the principal interest is in the ranges 0 < 6 7r and 0.1 < /vi < 15, with a value 
for the imaginary part of v which is small compared with the real part. 

Because, as is evident from ( l ) ,  the convergence of all the summations is oscillatory, 
care is needed in choosing a suitable value of n, say n = N, to terminate the computation. 
It is not generally true that increasing an  arbitrarily chosen value of N will improve 
the accuracy of the result. N should be chosen so that the magnitude of the cosine 
function in (1) is unity, o r  as near unity as possible. For such values of N the sum is 
very close to the value obtained with N+ X, provided that N>>lvl. 

Some illustrative numerical data are presented in figures (1) to (4). These show the 
magnitude (or  modulus) of the sum to n = N terms of each of the formulae, for one 
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1 . 2 :  ' ' ' ' ' ' ' 4 
1 %  R I 

e; 
El 0.8 

E j 0.4 
v1 

m=O, 19-45" 

- Formula 2 
x Formula 6 1 
o Formula 8 

Formula 14 1 
~ = l  342-10 194 

4 

O O  ' ' 5 10 15 
Term Number, N 

Figure I .  Sum to N terms v f the  formulae for lP,(cos a ) /  u i th  19 = 45"and U = I 342 -10 194 
Data points are linked to guide the eke ( iP ,  =068414 for these Lalues of I9 and U ,  see 
Jones and Joyce 1989 1 

1.2 

2 
w 
0 

$0.4 

0 

3 

m=O I9=45" 

+ Formula 2 
x Formula 6 
o Formula 8 , 

~ ~ 1 5  64-10 879 

Term Sumber,  N 
Figure 2. Sum to N terms of the formulae for iP,(cos 8 ) (  with I9 = 45" and U = 15.64 - i0.879. 
(lP,i =0.94472.) 

value of 19, and two particular values of I/ (one small and  the other relatively large) 
of significance in our electromagnetic wavefield computations (see Jones and  Joyce 
1989). The differing degree of convergence of the formulae is evident, as is the cosine 
dependence on n predicted by Sommerfeld's formula ( l ) ,  and the major contribution 
made by terms in the vicinity of n = lvl. 

Most of our computations have been made using (14) and (16) for which, typically, 
10 to 20 terms of the summations are required to compute the Legendre functions to 
a precision of 1 part in 200 (i.e. 'graphical accuracy'). It has been found that our 
computer algorithms for implementing (14) and  (16) enable such calculations to be 
made about twice as quickly as for the much more involved algorithms which use the 
hypergeometric function expansions. It should be admitted, however, that the latter 
compute Legendre functions to the maximum precision possible on a 24 bit Mantissa 
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1.2 ' , i 

m = l ,  29=450 1 
v = l  342-io 194 4 
+ Formula 2 
x Formula 5 
o Formula 7 

Formula 1 1  
Formula 16 3 

1 
O C , ' " '  5 10 15 

Term Number, N 
Figure3. Sum to h terms of the formulae for lP!,(cos 911 with 13 = 45" and  v = 1 342 -10 194 
( Pt' = 0 73957 1 

m = l  zY=45" 

+ Formula 2 
x Formula 5 
o Formula 7 

Term Number, N 
Figure4. S u m t o  h ' termsoftheformulaefor /P! , (cos  6 ) ( w i r h  4 = 4 5 " a n d  v =  15.64-10.879. 
( lP t l  = 15.028.) 

computer (using single precision variables). In our application, the two Legendre 
functions P:( -cos 6) and P t (  -cos 6) have to be computed within a program iteration 
loop for fitting experimental data to a theoretical model so computation time is of 
importance. The simplicity of the current formulae (with the consequent ease of 
programming) and  their physical significance (discussed in section 2 and section 5) 
are the major advantages of the work presented here. 

7. Summary 

A number of formulae have been derived which enable the Legendre functions P l " ( x )  
with v complex, x real with - 1  < x  +1 and  m = 0, 1, to be computed efficiently for 
values of v and 6 for which use of the asymptotic expansion is inappropriate because 
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IvI or 6 is too small. The formulae all involve series expansions in terms of the zonal 
harmonic functions P:( x 1 which can be calculated rapidly using a recurrence relation. 
The formulae given in this paper are suitable for implementation on microcomputers 
and  have all been tested numerically and shown to be valid. 
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